Orienting edges to fight fire in graphs

نویسندگان

  • Julien Bensmail
  • Nick Brettell
چکیده

We investigate a new oriented variant of the Firefighter Problem. In the traditional Firefighter Problem, a fire breaks out at a given vertex of a graph, and at each time interval spreads to neighbouring vertices that have not been protected, while a constant number of vertices are protected at each time interval. In the version of the problem considered here, the firefighters are able to orient the edges of the graph before the fire breaks out, but the fire could start at any vertex. We consider this problem when played on a graph in one of several graph classes, and give upper and lower bounds on the number of vertices that can be saved. In particular, when one firefighter is available at each time interval, and the given graph is a complete graph, or a complete bipartite graph, we present firefighting strategies that are provably optimal. We also provide lower bounds on the number of vertices that can be saved as a function of the chromatic number, of the maximum degree, and of the treewidth of a graph. For a subcubic graph, we show that the firefighters can save all but two vertices, and this is best possible.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Balanced Degree-Magic Labelings of Complete Bipartite Graphs under Binary Operations

A graph is called supermagic if there is a labeling of edges where the edges are labeled with consecutive distinct positive integers such that the sum of the labels of all edges incident with any vertex is constant. A graph G is called degree-magic if there is a labeling of the edges by integers 1, 2, ..., |E(G)| such that the sum of the labels of the edges incident with any vertex v is equal t...

متن کامل

Chromaticity of Turan Graphs with At Most Three Edges Deleted

Let $P(G,lambda)$ be the chromatic polynomial of a graph $G$. A graph $G$ ischromatically unique if for any graph $H$, $P(H, lambda) = P(G,lambda)$ implies $H$ is isomorphic to $G$. In this paper, we determine the chromaticity of all Tur'{a}n graphs with at most three edges deleted. As a by product, we found many families of chromatically unique graphs and chromatic equivalence classes of graph...

متن کامل

Total domination in $K_r$-covered graphs

The inflation $G_{I}$ of a graph $G$ with $n(G)$ vertices and $m(G)$ edges is obtained from $G$ by replacing every vertex of degree $d$ of $G$ by a clique, which is isomorph to the complete graph $K_{d}$, and each edge $(x_{i},x_{j})$ of $G$ is replaced by an edge $(u,v)$ in such a way that $uin X_{i}$, $vin X_{j}$, and two different edges of $G$ are replaced by non-adjacent edges of $G_{I}$. T...

متن کامل

On the revised edge-Szeged index of graphs

The revised edge-Szeged index of a connected graph $G$ is defined as Sze*(G)=∑e=uv∊E(G)( (mu(e|G)+(m0(e|G)/2)(mv(e|G)+(m0(e|G)/2) ), where mu(e|G), mv(e|G) and m0(e|G) are, respectively, the number of edges of G lying closer to vertex u than to vertex v, the number of ed...

متن کامل

On the saturation number of graphs

Let $G=(V,E)$ be a simple connected graph. A matching $M$ in a graph $G$ is a collection of edges of $G$ such that no two edges from $M$ share a vertex. A matching $M$ is maximal if it cannot be extended to a larger matching in $G$. The cardinality of any smallest maximal matching in $G$ is the saturation number of $G$ and is denoted by $s(G)$. In this paper we study the saturation numbe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Australasian J. Combinatorics

دوره 71  شماره 

صفحات  -

تاریخ انتشار 2018